

Sciences expérimentales – Modélisation

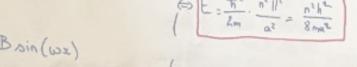
La physique quantique du laboratoire à la salle de cours : Comment modéliser les électrons dans la matière ?

Enseigner la Physique du Solide en APP (Apprentissage par Problèmes) : « De la molécule à la physique du solide »

Christophe Durand

n developant on trouve:

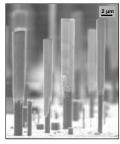
Enseignant-chercheur à l'Université Grenoble-Alpes

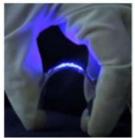

Polytech Grenoble

Laboratoire Photonique ELectronique et Ingénierie QuantiqueS (PHELIQS)

En collaboration avec Céline Darie, Institut Néel, Université Grenoble-Alpes

Or opport: 35 A+ Mg A=0


Qui suis-je?


Chercheur

CEA-Grenoble, Lab. Nanophysique et Semiconducteurs

Physique des semiconducteurs Croissance cristalline de nanostructures

Enseignant

Polytech Grenoble, Filière Matériaux

Physique du solide Physique des semiconducteurs – composants

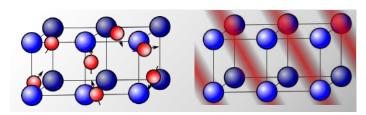
Pédagogie socio-constructiviste Expertise en APP (Apprentissage par problèmes)

Conseiller pédagogique

SUP, Service Universitaire de Pédagogie (2009-2016)

La physique quantique, c'est quoi?

Physique non-intuitive! → modélisation


Domaine d'applications

Dualité onde - corpuscule

L'équation fondamentale

Physique de l'infiniment petit

Description de la position, vitesse et énergies des particules élémentaires

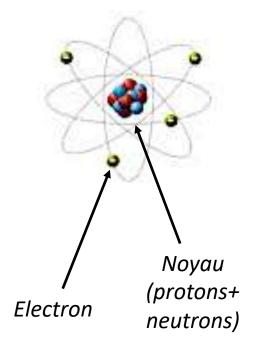
Equation de Schrödinger

$$\left(-\frac{\hbar^2}{2m}\Delta + V(\vec{x})\right)\Psi(\vec{x}) = E\Psi(\vec{x})$$

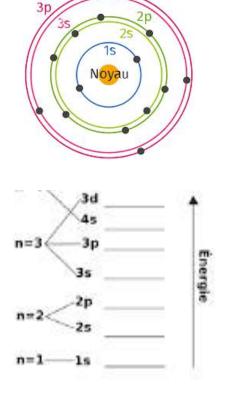
Principe d'incertitude

« Dieu ne joue pas aux dés » (Einstein)

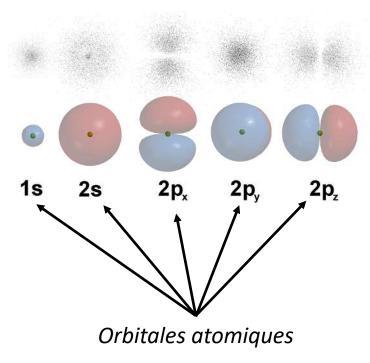
Principe d'Heisenberg


 $\Delta \chi \Delta p \geq \frac{1}{2}$

Probabilité de présence


 $dP = |\Psi|^2 . d\tau$

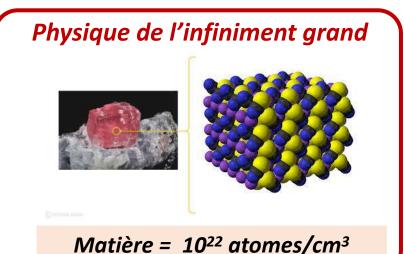
L'atome vu par la physique quantique : vive les électrons ! nuages électroniques !


Modèle de Rutherford

Modèle de Bohr

Modèle décrit par la physique quantique

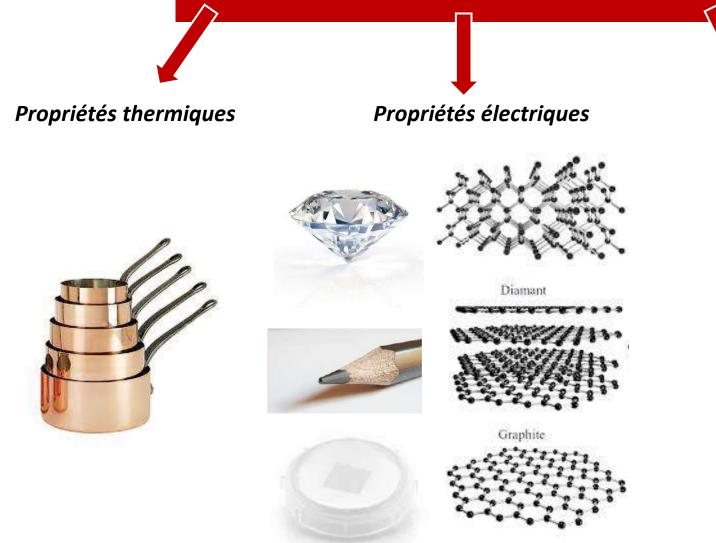
NOTRE GRANDE QUESTION:


Comment modéliser les électrons des atomes dans la matière ?

Physique de l'infiniment petit

$$\left(-\frac{\hbar^2}{2m}\Delta + V(\vec{x})\right)\Psi(\vec{x}) = E\Psi(\vec{x})$$

$$dP = |\Psi|^2 . d\tau$$


Physique quantique

Modélisation des électrons dans la matière: UN PROBLEME DIFFICILE!

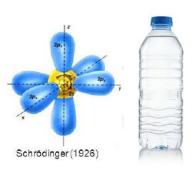
→ Physique du Solide

Modélisation des électrons dans la matière

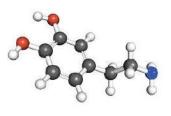
Propriétés optiques

Comment modéliser les électrons des atomes dans la matière ?

Le connu

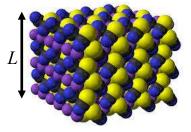

Modèle de l'atome isolé

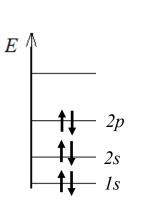
Le nouveau

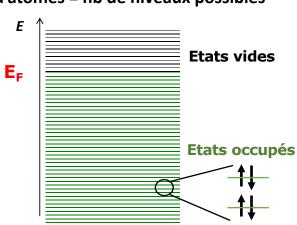

Modèle de l'atome non-isolé

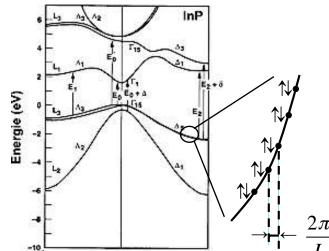
L'atome

Liaisons Chimiques


La molécule (qq atomes)


Physique du Solide


Le solide (10²⁴ atomes)



nb d'atomes = nb de niveaux possibles

Place de la modélisation : recherche, enseignement, étudiant

Support d'étude pour la modélisation

Modélisation des électrons dans la matière

Propriétés thermiques

Propriétés électriques

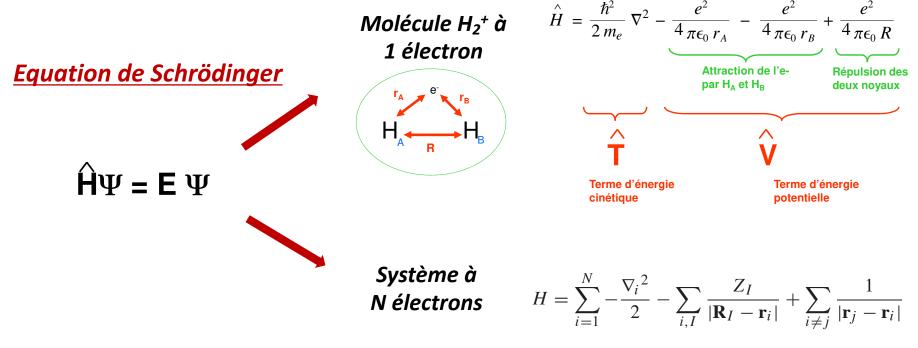
Propriétés optiques

<u>Plan de l'exposé</u>

- 1. La modélisation des électrons dans la recherche
- 2. La modélisation des électrons dans l'enseignement supérieur
- 3. Notre approche pédagogique de la modélisation des électrons
- 4. Analyse du dispositif APP
- 5. Pistes pour pratiquer la modélisation avec les étudiants

Place de la modélisation : recherche, enseignement, étudiant

Support d'étude pour la modélisation



<u>Plan de l'exposé</u>

1. La modélisation des électrons dans la recherche

- a. Equation à résoudre : un problème insoluble !
- b. Les modèles ab-initio
- c. Les modèles empiriques
- d. Le modèle des liaisons fortes
- e. Bilan des méthodes et des usages

1. Recherche – a) Equation à résoudre : un pb insoluble !

Ex: N=10 e⁻ qui occupe un volume de 10 Å³ divisé en 10x10x10 petits cubes \rightarrow grosso modo 1000^N = 10³⁰ configurations à calculer

Le calcul exact possible pour quelques électrons à l'aide de puissants ordinateurs

→ Problème insoluble au-delà de 100 électrons (quelques atomes) ...

1. Recherche – b) Les modèles ab-initio

Méthodes « ab-initio » sans « a priori » (sans donnée expérimentale)

1. Approches du champ moyen (1930-1990)

Principe : Calcul pour 1 seul électron en considérant que les autres électrons forme un potentiel moyen V^{e-e}

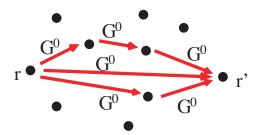
Approximation de Hartree-Fock
Modèle de Thomas-Fermi
Méthode de la DFT (Théorie de la fonctionnelle de la densité)

Prix Nobel de Chimie

Prix Nobel de Chimie Walter Kohn en 1998

2. Approches perturbatives (1990 - ...)

Principe: Théorie de la perturbation à N-corps à partir de fonction de Green G⁰ (tel un jeu de billard quantique)


Approximation dite GW (nécessaire pour la précision de la bande interdite)

$$H = \sum_{i=1}^{N} -\frac{\nabla_{i}^{2}}{2} - \sum_{i,I} \frac{Z_{I}}{|\mathbf{R}_{I} - \mathbf{r}_{i}|} + \sum_{i \neq j} \frac{1}{|\mathbf{r}_{j} - \mathbf{r}_{i}|}$$

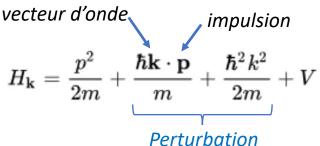
$$H = -\frac{1}{2} \nabla_{\mathbf{r}}^{2} - \sum_{I} \frac{Z_{I}}{|\mathbf{R}_{I} - \mathbf{r}|} + \tilde{V}^{ee}(\mathbf{r})$$

Approche classique permettant le calcul jusqu'à 1000 atomes

(temps de calcul en N³)

Approche moderne plus précise permettant le calcul jusqu'à 1000 atomes

(temps de calcul en N⁴)

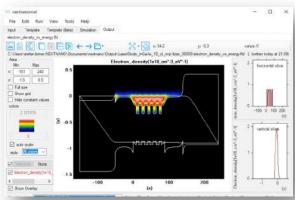

1. Recherche – c) Les modèles empiriques

Méthodes qui combinent la théorie avec des données expérimentales

Méthode k.p

Principe : Méthode qui combine la théorie de la perturbation et une méthode empirique. Les calculs sont corrigés par des données expérimentales

Théorie de la perturbation


Modèle corrigé par des données empiriques

Masses effectives $m \rightarrow m^*$

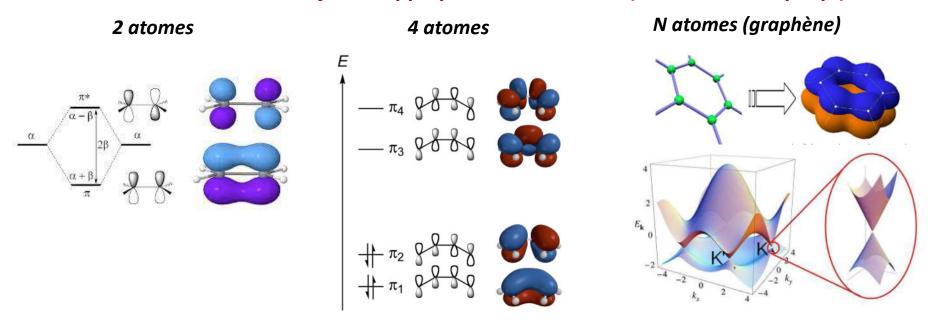
Quasi-particule : la masse de l'électron est modifiée de manière artificielle pour tenir compte du réseau cristallin. m* dépend du matériau et de la direction de k

Outil pratique de simulation

Approche pratique et précise

Méthode couramment utilisée dans les laboratoires par les non-expert de la modélisation

1. Recherche – d) Le modèle des liaisons fortes

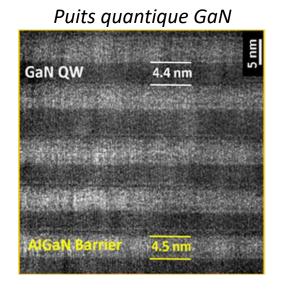

Méthode dite LCAO

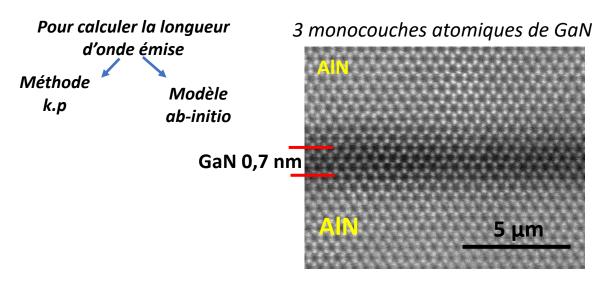
Principe : La solution de la fonction d'onde est une combinaison linéaire des orbitales atomiques de tous les atomes

$$\psi(\alpha) = c_1 \Phi_1 + c_2 \Phi_2 + c_3 \Phi_3 + \dots
= \sum_{n} c_n \Phi_n(\alpha)$$

Approximation de Hückel: interactions seulement avec les atomes 1er voisins

Méthode des liaisons fortes appliquées à la liaison π (orbitale atomique p_z)


Approche précise pour décrire les couches s et p qui s'applique à des solides


1. Recherche – e) Bilan des méthodes et des usages

navi		2		
nexu	_			
Software for sem	icondi	ictor na	node	ices

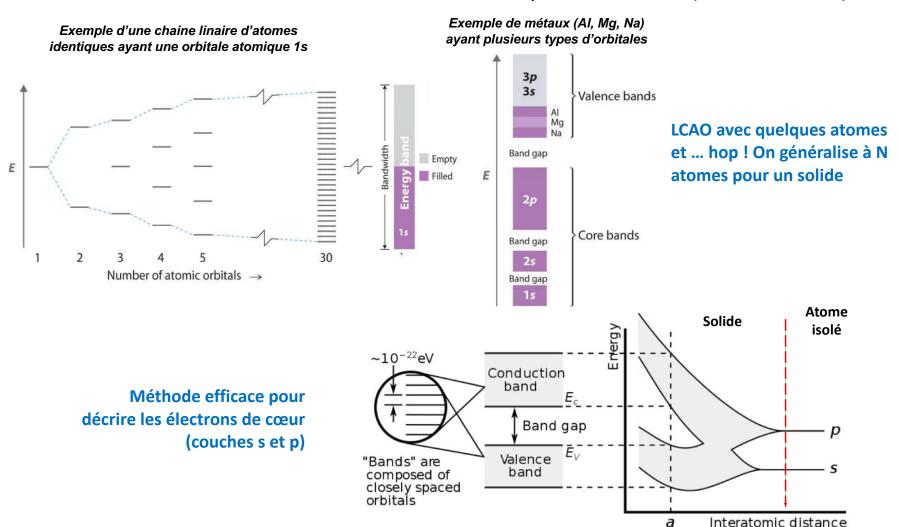
	Calculs exacts	Modèles <i>ab-initio</i>	Modèle empirique k.p	Modèle Liaisons fortes
Quoi ?	10 atomes	1000 atomes	Solide	Solide
Comment ?	Très précis	Assez précis	Très précis	Précis
Qui?	Chercheur-expert	Chercheur-expert	Tous	Chercheur-expert

Exemple sur mon activité de recherche

Se pose la question : comment enseigner ces modèles et les rendre accessibles ?

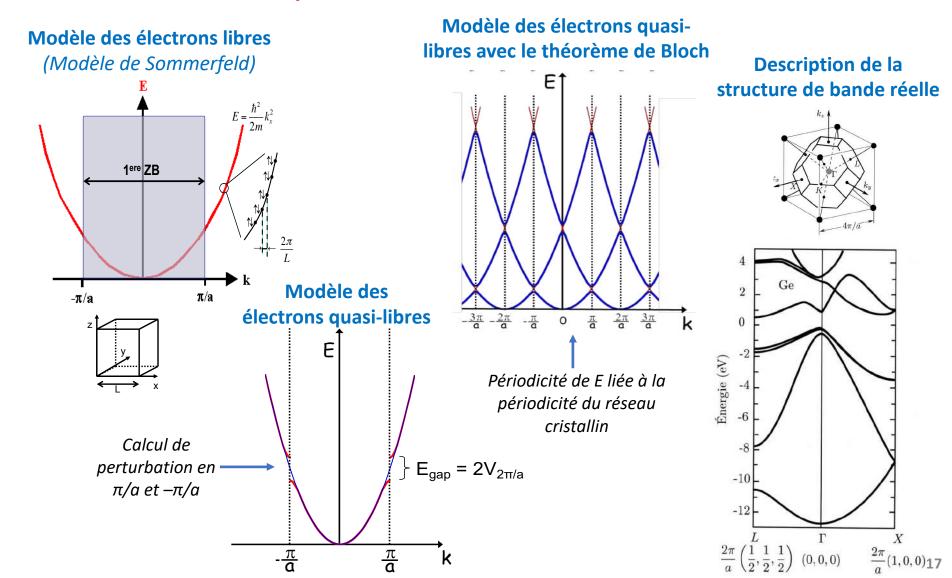
Place de la modélisation : recherche, enseignement, étudiant

Support d'étude pour la modélisation


<u>Plan de l'exposé</u>

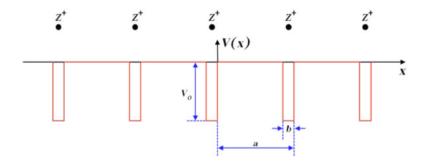
- 2. La modélisation des électrons dans l'enseignement supérieur
 - a. L'approche du point de vue des « Chimistes »
 - b. L'approche du point de vue des « Physiciens »
 - c. L'approche du point de vue des « Théoriciens »
 - d. Les obstacles épistémologiques

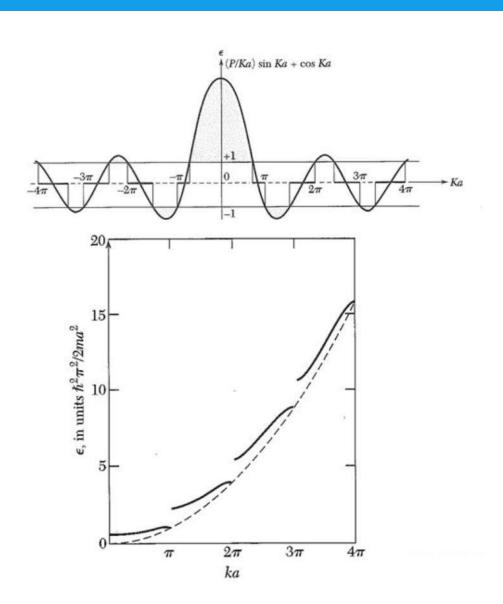
2. Enseignement – a) Approche des « Chimistes »


Le modèle des liaisons fortes

→ Combinaison linéaire des orbitales atomiques des atomes (méthode LCAO)

2. Enseignement – b) Approches des « Physiciens »

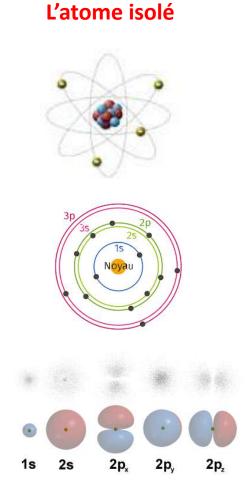

1. Modèle des électrons quasi-libres + théorème de Bloch


2. Enseignement – b) Approches des « Physiciens »

2. Modèle de Kronig-Penney

Résolution de Schrödinger en considérant un potentiel périodique carré fini pour le réseau cristallin

Modèle simple avec des calculs assez facile d'accès


2. Enseignement – c) Approches des « Théoriciens »

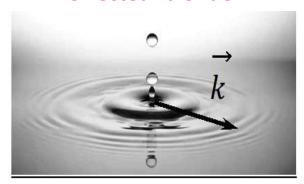
Résolution de Schrödinger détaillée en considérant un hamiltonien différents selon les différents modèles.

2. Enseignement – d) Obstacles épistémologiques

Trois grandes difficultés pour comprendre la physique du solide :

1. Modèle de l'atome isolé profondément ancré

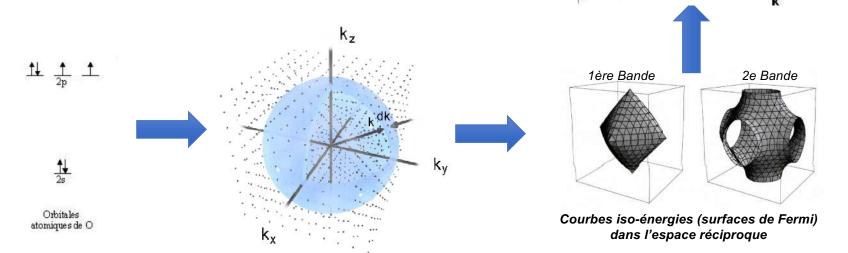
2. Enseignement – d) Obstacles épistémologiques


Trois grandes difficultés pour comprendre la physique du solide :

1. Modèle de l'atome isolé profondément ancré

Le vecteur d'onde *k*

k en 3D


2. Enseignement – d) Obstacles épistémologiques

Trois grandes difficultés pour comprendre la physique du solide :

1. Modèle de l'atome isolé profondément ancré

2. Le vecteur d'onde *k*

3. Remplissage des niveaux d'énergie en 3D

2. Enseignement - Conclusion

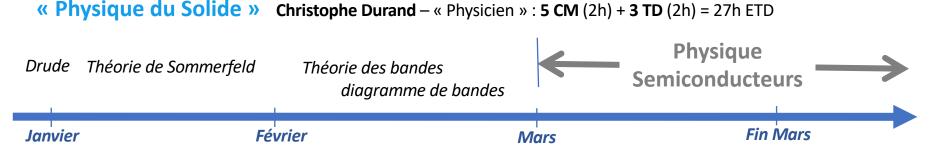
	Chimistes	Physiciens	Théoriciens
Avantages	Lien entre orbitales atomiques et bandesDe 2 à N atomes	Explique l'origine physique du « Gap »Importance du vecteur k	Complétude des modèlesGrandes précisions
Inconvénients	- Pas besoin du vecteur d'onde k	 Pas de lien entre orbitales atomiques et bandes Précisions faibles 	 Modèles difficiles d'accès aux étudiants

- Les étudiants ont une vision partielle du problème avec souvent un seul point de vue proposé
- Face à la complexité, l'enseignant prend en charge l'ensemble des aspects théoriques et fait lui-même les calculs (ou pas)

Place de la modélisation : recherche, enseignement, étudiant

Support d'étude pour la modélisation

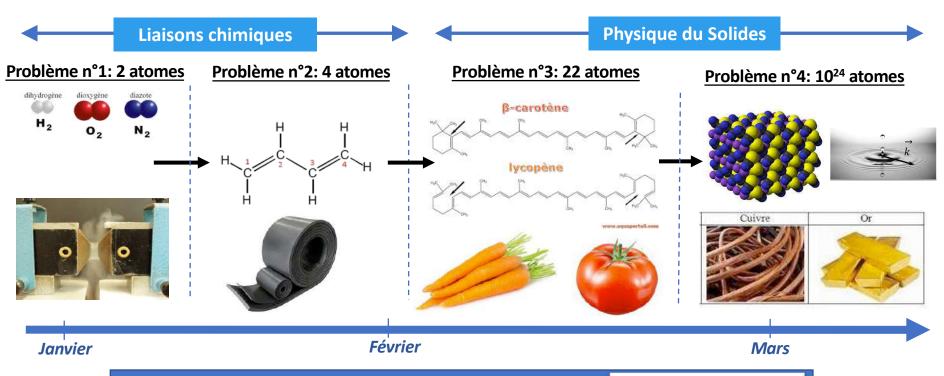
<u>Plan de l'exposé</u>


- 3. Notre approche pédagogique de la modélisation des électrons
 - a. Notre choix épistémologique
 - b. Notre choix didactique en APP
 - c. Notre approche « d'un modèle à l'autre »

3. Notre approche – a) Notre choix épistémologie

Avant 2016

2 cours / 2 enseignants différents



3. Notre approche – a) Notre choix épistémologie

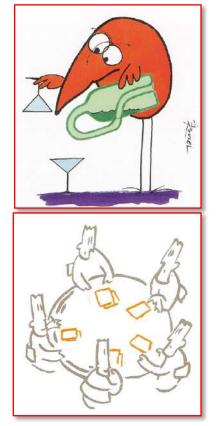
Après 2016

Approche graduelle

Fusion des 2 cours en 4 séquences-problèmes / 2 enseignants ensembles

Résolution de l'équation de Schrödinger avec différentes hypothèses pour décrire les propriétés des électrons

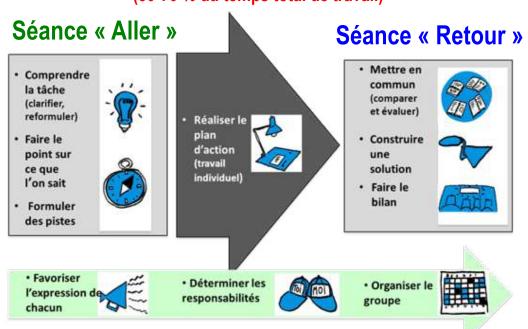
$$-\frac{\hbar^2}{2m}\nabla^2\psi + V(\boldsymbol{x})\psi = E\psi$$


- > Formalisme établi pour quelques atomes inutilisable face aux très grands nombres
- → in fine nécessité d'introduire de nouveaux concepts pour le changement d'échelle

3. Notre approche – b) Notre choix didactique en APP

Méthode APP (Apprentissage Par Problèmes)

Approche socioconstructiviste


Le problème

Un séquençage APP typique

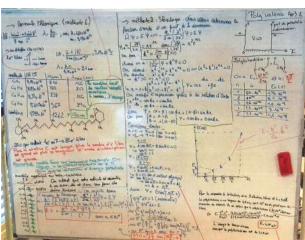
Travail Personnel TRAP

(50-70 % du temps total de travail)

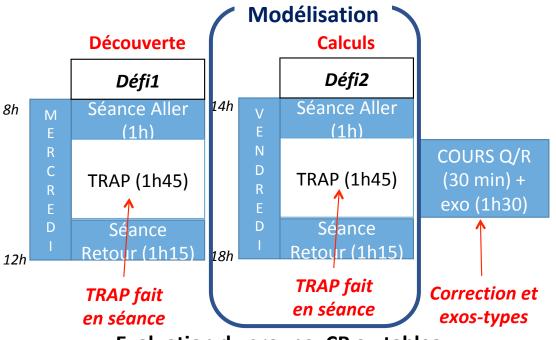
+ séances «mini-cours ou/et de questions/réponses»

Séance de Clôture

- Cours de synthèse/ reconstruction
- Evaluation
 INDIVIDUELLE
 (Quick-test)

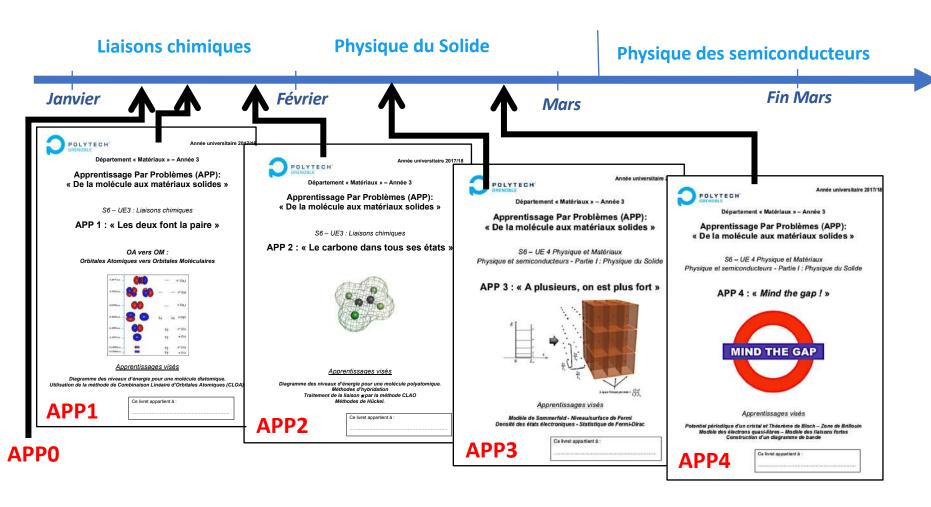


Quick Test


3. Notre approche – b) Notre choix didactique en APP

Le groupe

L'organisation de nos séquences APP



Evaluation du groupe: CR au tableau

Constitution de 8 groupes de 6 encadrés par 2 tuteurs

3. Notre approche – b) Notre choix didactique en APP

L'organisation des séquences APP

APPO: « Apporte ton grain de sable »

Objectifs:

- Comprendre le travail en groupe et la méthode APP
- Invitation à la modélisation
- Travail sur les grands nombres

DEFI n° 1: « le laisser-faire »

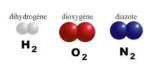
 $N_{grain de sable} = env. 10^{24} (Terre)$

DEFI n° 2 : « une organisation précise »

Le travail se déroulera en 2 temps :

1er temps - TRAvail Personnel - TRAP (10 min) :

ATTENTION: Travail strictement individuel. Interdiction de discuter avec ses voisins!!!!!!! Essayer de résoudre par vous-même le défi n°2.

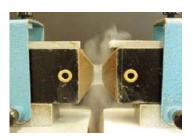

2e temps - Travail en équipe (20 min)

ATTENTION: Travail strictement collectif. Obligation de discuter avec son groupe !!!!!!!!

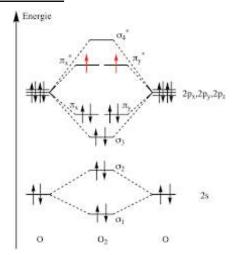
Avant de commencer, attribuer les rôles suivants:

Animateur: s'assure que le groupe suit les étapes prévues et anime la discussion (distribue la parole, suscite /sollicite la participation ou modère les interventions)

APP1: « Les deux font la paire »

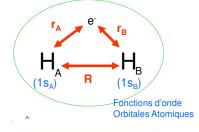


Objectifs:


- Modèle LCAO
- Résolution exacte du problème avec la molécule H₂⁺

Défi n°1

Pourquoi O_2 est magnétique et pas N_2 ?


<u>Construction d'un diagramme d'énergie</u> d'une molécule

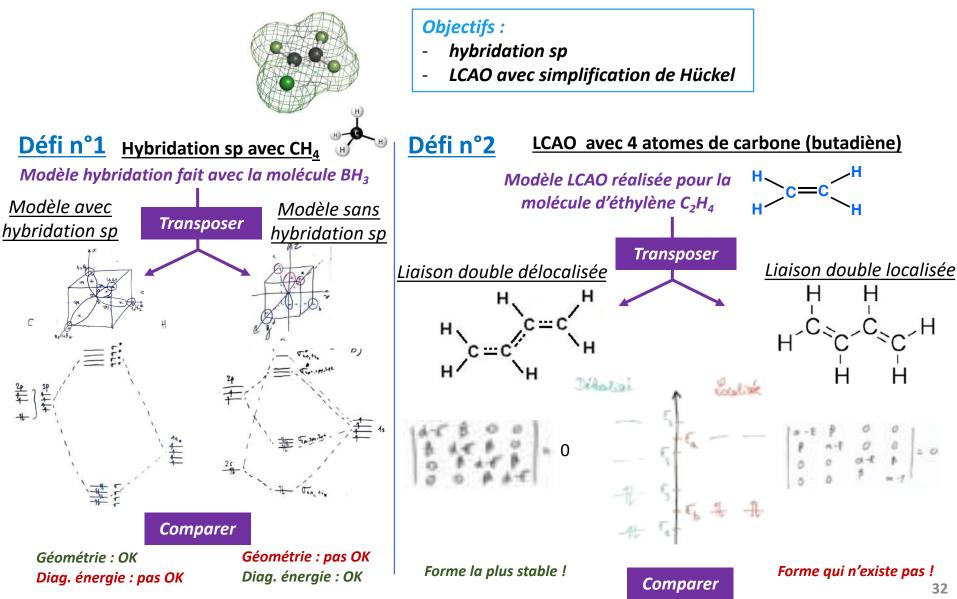
Défi n°2

Est-ce que la molécule He₂ existe ?

Résolution exacte de l'eq. Schrodinger pour H2[±]

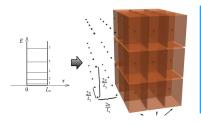
$$\psi_{\rm app} = c_1 \, 1 \, s_A \, + \, c_2 \, 1 \, s_B$$

Orbitale Moléculaire = Combinaison Linéaire d' Orbitales Atomiques



$$\langle E^+ \rangle = \frac{\alpha + \beta}{1 + S}$$

 $\langle E^- \rangle = \frac{\alpha - \beta}{1 - S}$


annexe mathématique sans tous les détails

Edifice	$\mathbf{H_2}^+$	He ₂
ΣN_v	$2 \times 1 - 1 = 1$	2×2 = 4
Diagramme des O.M.		-___

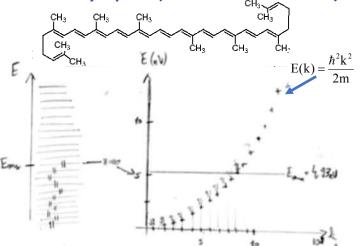
APP2 : « Le carbone dans tout ses états »

APP3: « A plusieurs, on est plus fort »

Objectifs:

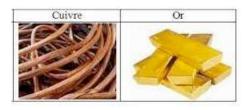
- Modèle des électrons libres (Modèle de Sommerfeld)
- Quantification du vecteur d'onde k de la fonction d'onde
- Modèle appliqué à un système 1D, 2D et 3D

Défi n°1


Pourquoi les tomates sont rouges?

Modèle d'un électron dans un puit quantique

Application d'un modèle connu

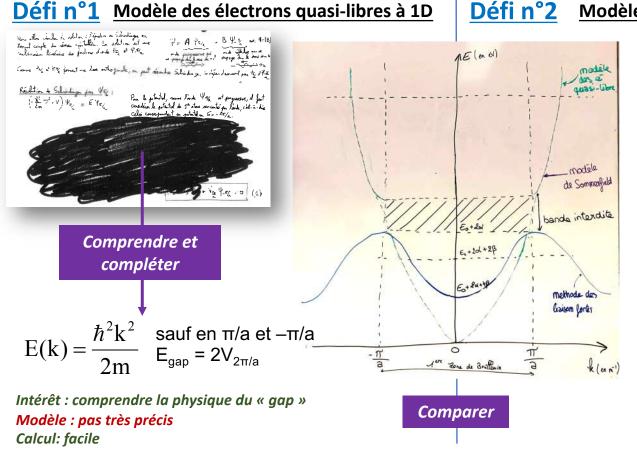

Modèle des électrons libres à 1D

Molécule de Lycopène (22 atomes de carbone)

Défi n°2

Quel est le meilleur conducteur entre le cuivre et l'or?

Modèle des électrons libres à 3D


Modèle des électrons Modèle des électrons ➤ libres à un cristal (3D) **Transposer** libres à un système 2D 10²²atomes/cm³

APP4: « Mind the gap! »

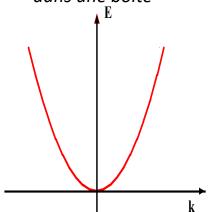
Objectifs:

- Prise en compte du potentiel du réseau d'atomes
- Modèle des électrons quasi-libres à 1D
- Modèle des liaisons fortes à 1D

Défi n°2 Modèle des liaisons fortes à 1D

α: intégrale coulombienneβ: intégrale d'échange

Intérêt : connaitre un modèle important Modèle : précis pour les couches 2s et 2p

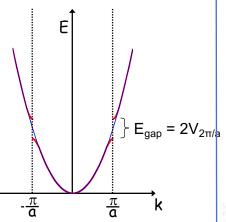

Calcul: difficile 34

Bilan de l'approche « d'un modèle à l'autre »

Modèle des électrons libres

(Sommerfeld)

Electrons libres dans une boite

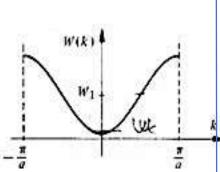

$$E(k) = \frac{\hbar^2 k^2}{2m}$$

Quantification du vecteur d'onde k

Modèle simple Modèle pas précis

Modèle des électrons quasi-libres

Electrons libres sauf pour des valeurs de k connues

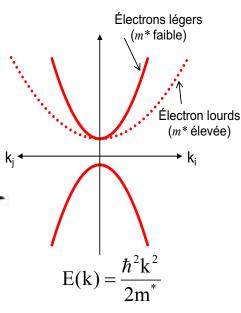

$$E_{gap} = 2V_{2\pi/a}$$

Lien entre périodicité des eet celle du réseau des atomes

Modèle limité Explication de l'origine du gap

Modèle des liaisons fortes

Electrons avec une LCAO des 1^{er} atomes voisins


$$E(k) = E_0 + 2\alpha + 2\beta \cos(ka)$$

Lien entre Bande d'énergie = Orbitale Atomique

Modèle complexe à calculer Modèle assez précis pour les électrons de cœur (2s, 2p)

Modèle des masses effectives

Modif. de masse des électrons liée à l'interaction avec le réseau des atomes

Intro aux méthodes empiriques (modèle k.p)

Modèle simple Modèle qui « colle » à l'expérience

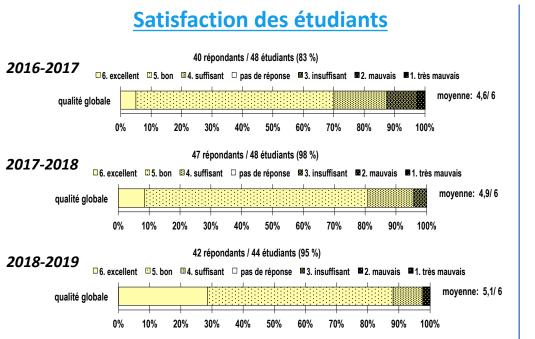
Place de la modélisation : recherche, enseignement, étudiant

Support d'étude pour la modélisation

Modélisation des électrons dans la matière

Propriétés thermiques

Propriétés électriques


Propriétés optiques

<u>Plan de l'exposé</u>

4. Analyse du dispositif APP

- a. Retour des étudiants sur 3 années
- b. Bilan sur les notes
- c. Le passage en distanciel

4. Analyse dispositif APP- a) Retour des étudiants

Après 3 ans:

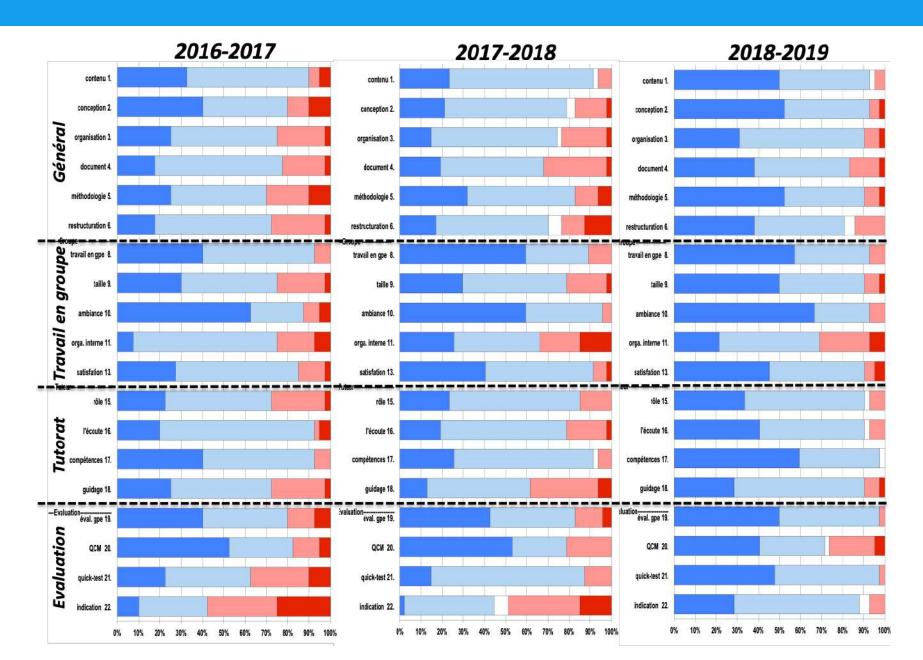
- 95% des étudiants adhèrent au dispositif APP
- 30% des étudiants trouvent le dispositif APP « Excellent »

Point de vigilance des APP: 10-15% de groupes dysfonctionnent

Ce que j'ai aimé :

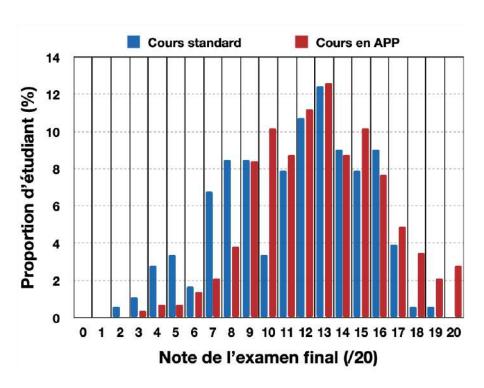
- Travail en groupe (95% satisfait)
- Dispositif/organisation des APP
- Engagement/disponibilité des enseignants
- Entreaide/Bonne ambiance

Ce que je n'ai pas aimé:


- Manque d'exercice, préparation à l'examen
- Certains étudiants peu investis
- Pas assez de réponses de la part des enseignants

Actions réalisées:

- Séance de clôture avec exercices d'examen
- Enseignants disponibles pendant le travail personnel
- Sujets qui ciblent mieux les apprentissages


Darie, C.; Durand, C. Fusion d'un Cours de Chimie et de Physique Par l'apprentissage Par Problèmes (APP) : Mise En Place, Améliorations et Incidences Chez Les Étudiants. Les Ann. QPES **2021**, 1 (3).

4. Analyse dispositif APP- a) Retour des étudiants

4. Analyse dispositif APP – b) Bilan sur les notes

Résultat à l'examen terminal avant et après les APP

Statistiques faites:

- sur 2 ans pour le cours standard
- sur 3 ans pour le cours en APP

Avec les APP:

 \rightarrow Notes <7: 15% \rightarrow 5 % Moyenne:

Notes <10:</p>
34% → 17%

Notes >18: $0\% \rightarrow 8\%$

A retenir:

- 1/6 des étudiants en-dessous de la moyenne (au lieu de 1/3)
- Réduction par 2-3 du nombre d'étudiants en grande difficulté (<7/20)
- D'excellentes notes > 18/20 possibles (5-10%)

Darie, C.; Durand, C. Fusion d'un Cours de Chimie et de Physique Par l'apprentissage Par Problèmes (APP) : Mise En Place, Améliorations et Incidences Chez Les Étudiants. Les Ann. QPES **2021**, 1 (3).

+0,93 /20

4. Analyse dispositif APP – conclusion

A retenir au bout de 3 ans :

- Forte adhésion des étudiants au dispositif pédagogique malgré un cours théorique difficile (95%)
- Amélioration des résultats de l'examen terminal
- Plaisir de collaborer/d'échanger entre 2 enseignants de disciplines différentes
- → Extension des APP à la « Physique des Semiconducteurs »

Initiation méthode APP/Travail groupe

APP 0: « Apporter votre grain de sable! »

Cours: Liaisons chimique

APP 1: « Les deux font la paire »

APP 2: « Le carbone dans tous ses états »

Cours: Physique du Solide

APP 3: « À plusieurs, on est plus fort »

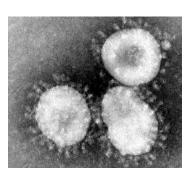
APP 4: « Mind the gap! »

Depuis 2019

Cours : Semiconducteurs et dispositifs

APP 5: « Vive le dopage »

APP 6: « La jonction P-N, une idée lumineuse! »


APP 7: « Le transistor MOS: une révolution

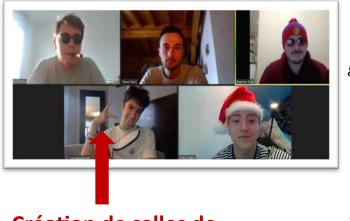
infiniment petite ».

Mi-Janvier → début Avril

4. Analyse dispositif APP – c) le passage au distanciel

Comment passer les APP en enseignement à distance ?

Année 2019-2020:

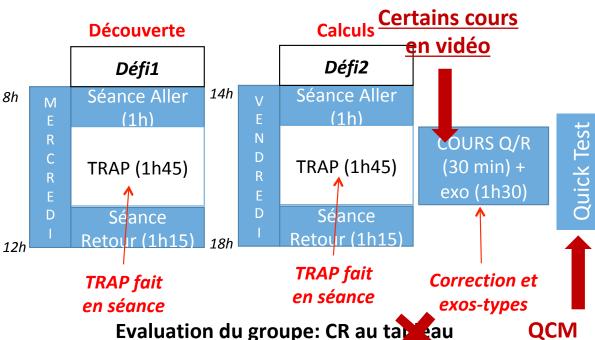

- > 50% en distanciel improvisé
- Google-Drive/Discord

Année 2020-2021:

- > 100 % en distanciel anticipé
- Google-Drive/Zoom

4. Analyse dispositif APP – c) le passage au distanciel

Le groupe


<u>Création de salles de</u> <u>travail dans Zoom avec</u> <u>possibilité d'appeler</u>

<u>l'enseignant</u>

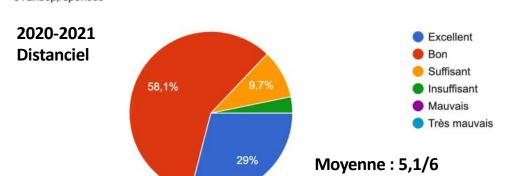
<u>Humour – Bonne ambiance</u>

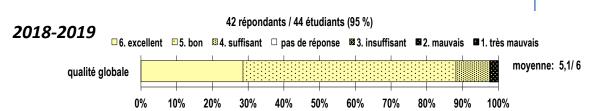
+ Sondages réguliers

L'organisation d'une séquence APP

Poster en ligne avec

Google-Drive


QCM noté sous moodle


4. Analyse dispositif APP – c) le passage au distanciel

Satisfaction des étudiants

31 /40 étudiants (taux de réponse: 78%)

Dans l'ensemble, vous estimez que cet enseignement à distance a été : 31 réponses

Résultat à l'examen terminal

Comparaison note APP présentiel/distanciel:

 \triangleright Notes <7: 5 % \rightarrow 5%

Notes <10:</p>
17% → 22 %

 \rightarrow Notes >18: 8% \rightarrow 10%

Moyenne 2018-2019 (APP en présentiel) 13,23/20

Moyenne 2020-2021 (APP en distance) : 12,92/20

Place de la modélisation : recherche, enseignement, étudiant

Support d'étude pour la modélisation

Modélisation des électrons dans la matière

Propriétés thermiques

Propriétés électriques

Propriétés optiques

<u>Plan de l'exposé</u>

- 5. Pistes pour pratiquer la modélisation avec les étudiants
 - a. Travail autour de la notion d'un modèle
 - b. Approches pédagogiques autour de la modélisation

5. Pistes – a) Travail sur la notion d'un modèle

Lien entre un modèle et le réel

- Un modèle ne décrit pas exactement le réel
- Un modèle peut être prédictif sans pour autant correspondre au réel

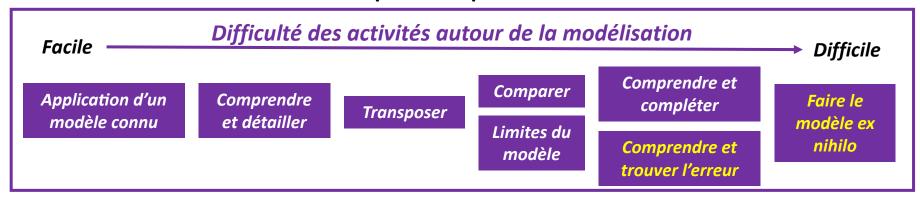
Ex. les quasi-particules : modification de la masse de l'électron pour pouvoir utiliser un modèle simple et être prédictif, mais sans lien avec le réel

→ Equilibre entre simplicité et réalité physique complexe

Limites d'un modèle

- Un modèle s'appuie sur des hypothèses simplificatrices
- Tester le modèle dans des situations extrêmes

→ Etre bien conscient des limites du modèle


D'un modèle à l'autre Pour affronter la complexité:

- on part du modèle le plus simple
- on complexifie le modèle quand cela est nécessaire
- Introduction de modèles en rupture parfois nécessaire
- → Etre capable de choisir et de changer de modèle selon les situations

5. Pistes – b) Approches pédagogiques

Modélisation = activité d'apprentissage complexe

- Approche graduelle « en marche d'escalier » permettant d'accéder à la complexité
- Grande diversité des activités possibles pour initier à la modélisation :

- Le travail en groupe : intéressant et motivant pour affronter la complexité
- Le travail sur tableau : support idéal pour partager les idées, les calculs et pratiquer l'essai-erreur (« The greatest teacher, failure is »)
- Donner des jalons et des ressources pour accompagner la mise en œuvre de la démarche de modélisation
- Encourager les étudiants à avoir confiance en eux et valoriser leur travail (les étudiants ont tendance à chercher des solutions de facilité). Valoriser l'effort et le plaisir de la découverte par la modélisation.